
ll0

=
II

roll

r_

am P4
O_
N

O" C
Z _ 0

U

____=__
lmh

u_

Z _
wQON

I ._ 0.,_

--- j_,-, o

H w_cc0 C_

i _ _- _'-

Z 0 I,.-

4
Z

i

DEVELOPMENT OF A SOFTWARE SAFETY PROCESS

,-4
,O

eO
O

AND

A CASE STUDY OF ITS USE

Annual Progress Report

Submitted to:

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665

Attention:

Dr. D. E. Eckhardt, M/S 478

Submitted by:

John C. Knight

Professor

SEAS Proposal No. UVA/528344/CS93/103
June 1993

DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF

ENGINEERING
& APPLIED SCIENCE

University of Virginia
Thornton Hall

Charlottesville, VA 22903

w
DEVELOPMENT OF A SOFTWARE SAFETY PROCESS

AND

A CASE STUDY OF ITS USE

Annual Progress Report

Submitted to:

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665

Attention:

Dr. D. E. Eckhardt, M/S 478

L

m

i

w

m

w

Submitted by:

John C. Knight
Professor

Department of Computer Science

School of Engineering and Applied Science

University of Virginia
Thornton Hall

Charlottesville, VA 22903-2442

r

w

SEAS Report No. UVA/528344/CS93/103

June 1993

Copy No.

i

= :

=.._

L_

.

2.

3.

.

TABLE OF CONTENTS

°

6.

INTRODUCTION

THE MAGNETIC STEREOTAXIS SYSTEM

PREVIOUS WORK

3.1

3.2

Definitional Framework

Software-Safety Process

RESEARCH RESULTS TO DATE

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Reliability Assessment
Definitional Framework

Phased Inspections

Experience With Formal Specification

Reuse of Specifications

Developing Test Cases From Specifications

Prototype Software for the Magnetic

Stereotaxis System

Software Safety Process

Information Flow Analysis
Software Failure Emulation

Tri-State Models

PRESENTATIONS GIVEN

RESEARCH PUBLICATIONS

REFERENCES

5

6

8

10

10

10

10

10

11

11

11

11

12

15

17

19

20

22

ii

w

r,

t2_

,3
moo

=_:

b

Annual Report NAG-1-1123 1992

1. INTRODUCTION

The goal of this research is to continue the development of a comprehensive

approach to software safety and to evaluate the approach with a case study. The case

study is a major part of the project, and it involves the analysis of a specific safety-

critical system from the medical equipment domain. The particular application being

used was selected because of the availability of a suitable candidate system. We

consider the results to be generally applicable and in no way particularly limited by the

domain.

With more and more important functions in existing and proposed safety-critical

systems being implemented by computers, concern over the role of software in such

systems has increased. An especially important area is that class of systems for which

safety rather than reliability or availability is the overriding issue. Some research that

addresses the safety of software specifically has been reported but many open questions

remain. In particular, no complete process is available for engineers to follow when

building applications software for systems in which safety considerations dominate. We

are developing such a process through a combination of theoretical and empirical

research.

The research is concentrating on issues raised by the specification and verification

phases of the software lifecycle since they are central to our previously-developed

rigorous definitions of software safety. The theoretical research is based on our

framework of definitions for software safety. In the area of specification, the main topics

being investigated are (a) the development of techniques for building system fault trees

that correctly incorporate software issues and fla) the development of rigorous

techniques for the preparation of software safety specifications. The results of research

to date is documented in a latter section of this report.

-1-

Annual Report NAG-1-1123 1992

L_

w

L_

I

A second area of theoretical investigation is the development of verification

methods tailored to the characteristics of safety requirements. Verification of the correct

implementation of the safety specification is central to the goal of establishing safe

software. Our experience to date has shown that, for certain classes of safety problems,

exhaustive testing of a system is possible in reasonable amounts of time. Similarly, we

have shown that a complete test set for certain properties can be derived automatically

from the safety specifications if these specifications are written in a suitably formal

notation such as 'Z' [11].

The empirical component of this research is focusing on a case study in order to

provide detailed characterizations of the issues as they appear in practice, and to

provide a testbed for the evaluation of various existing and new theoretical results, tools

and techniques. The system being used in the case study is the Magnetic Stereotaxis

System (MSS), a safety-critical medical system presently under development. The

overall, long term approach being taken in the empirical research using this system is to

develop fully functional software of sufficient quality to be suitable for safety-critical

use. This approach is necessary to ensure that the research undertaken is not weakened

by unrealistic assumptions or restrictions. The empirical research is implementing the

various techniques resulting from the theoretical research and using these

implementations to assess the the theoretical results.

The remainder of this report is organized as follows. In the next section, the

Magnetic Stereotaxis System is summarized. Previous related work is summarized in

section 3. The research results to date are reviewed in section 4. Presentations given on

the general topic covered by this grant and listed in section 5, and publications resulting

from this grant are summarized in section 6.

-2-

Annual Report NAG-1-1123 1992

s

w

w

W

W

2. THE MAGNETIC STEREOTAXIS SYSTEM

The Magnetic Stereotaxis System (MSS) is an investigational device for performing

human neurosurgery being developed in a joint effort between the Department of

Physics at the University of Virginia and the Department of Neurosurgery at the

University of Washington [15]. It operates by manipulating a small permanent magnet

(known as a "seed") within the brain using an externally applied magnetic field. By

varying the magnitude and gradient of the external field, the seed can be moved along a

non-linear path and positioned at a site requiring therapy, e.g., a tumor. The device can

be used for hyperthermia by radio-frequency heating of the seed from an external source

or for chemotherapy by using the seed to deliver drugs to a site within the brain. The

MSS concept promises to be far less traumatic to the patient than present invasive

approaches to such treatments. However, the concept is new and its success depends on

satisfactory completion of several magnetic systems engineering tasks (now well

underway).

The externally applied magnetic field of the MSS has to have a gradient of at least

five Tesla/meter in order to move the seed through brain tissue. This field is produced

by a set of six superconducting coils that are mounted in a cryostatic enclosure that

surrounds the patient's head during surgery. Even using superconducting coils,

achieving the field required within the small available space is one of many research

issues that have to be resolved.

The seed location within the brain is monitored in real time by an X-ray imaging

system that provides two perpendicular images that include views of the skull, a set of

fiducial markers, and the seed. Data from these images is combined with a set of stored,

pre-operative Magnetic Resonance Images (MRI's) and displayed for the neurosurgeon.

The seed is maneuvered to the region of interest within the brain by varying the

-3-

__=

Annual Report NAG-1-1123 1992

externally applied magnetic field.

The MSS includes a computer system that is used:

• to control the X-ray, R.F-heating, and electromagnetic subsystems,

• to present MR images and X-ray data to the neurosurgeon, and

• to accept the neurosurgeon's input and translate it into commands to the various

subsystems.

Clearly, the MSS is a safety-critical system. The greatest concern is, of course, with

patient injury. A patient could be injured by failure of any of the physical subsystems.

For example, failure of the seed-positioning coils could move the seed incorrectly and

result in serious brain damage. Similarly, failure of the X-ray or RF-heating subsystems

could injure the patient by excessive radiation exposure or tissue heating.

w

E

W,

i

m

' II,

Cryogenic System]

__ Coil Control System I

._ X-Ray Imaging System[

0 perat°r Displa 1

L o

Computer Control System Superconducting_('.oils

Patient Therapy Region

X-Ray Sources

Radio Frequency Heaung Coils

Fig. 1 - Magnetic Stereotaxis System

-4-

Annual Report NAG-1-1123 1992

!

Just as subsystem failure could lead to injury, so could failure of the control

software. For example, a software failure could cause incorrect drive currents to be

applied to the seed-positioning coils thereby resulting in brain damage. Even a failure

of the image display system could lead to injury if the surgeon's actions were based on

improperly displayed MR images or X-ray data.

Although patient injury is the greatest concern, protection of the equipment itself

from damage resulting from incorrect use or internal failure is also important. For

example, the seed-positioning coils are very high energy devices and the current

through them has to be managed very carefully. Inappropriate current changes could

quench the coils and cause damage to the ancillary cryogenic equipment.

w

!

_m

w

m

w

m

The state of the MSS is that the concept is fully defined, the majority of the basic

research in physics is complete, and a fully functional prototype is nearing completion

for demonstration and evaluation. It will be operated by prototype software [15]. We

using the MSS as a case study in our research on safety-critical systems. Our goal is the

development of tools and techniques that permit such systems to be built with the

required assurance of safe operation. Figure 1 show the major components of the MSS.

3. PREVIOUS WORK

We have previously defined a preliminary framework of definitions for software

safety. This framework was deemed to be a necessary first step in the development of

the comprehensive software safety process that we seek. In addition, we have

previously identified certain elements of the software-safety process that we are

developing. This previous work is summarized here briefly as background for the

section on research results.

-5-

m_

_rT

Q

W

m

E

W

Annual Report NAG-1-1123 1992

3.1 Definitional Framework

The definitional framework views a system as a set of interacting components [4].

As has been noted elsewhere [4, 5], software is never unsafe in isolation. But, in practice,

software is never used in isolation. Software is always used within a system, and it is

merely one of many components of a complete system. It is a component of a complete

system in the same sense that entities such as computer hardware, sensors, actuators,

power supplies, packaging, and even human operators are each merely components of a

system.

In a general sense, none of these various components is unsafe in isolation because,

when isolated, these entities are separated from the notion of hazard. It is only in the

context of the complete system that the various hazards have meaning. None of the

components changes and suddenly becomes "unsafe" when incorporated into a system.

Any design deficiency in a component is present when the component is isolated just as

when it is part of a system. A deficiency in a component leads to a hazard only when

the component is part of a system because it is the system that defines the hazard.

Hazard is a system concept, not a component concept. In particular, as noted by

Leveson the notion of hazard is not a software concept [5].

Since software is a system component, an important goal in the development of a

theory of software safety is separation of the theory from systems safety yet smooth

integration with it. Without separation, we run the risk of needlessly complicating and

weakening our conclusions about software with external systems concerns. Without

integration, we run the risk of reaching conclusions about software that do not

contribute to the safety of the associated systems.

m

W

-6-

v

r

I

i E

i

z
w

Annual Report NAG-1-1123 1992

The basic structure of the definitional framework requires three sets of

specifications for each system component. The first defines the overall functionality of

the component, the second states the assumptions that can be made about the

component's behavior should it fail, and the third specifies the action that the

component is to take when other components fail. Any component in a safety-critical

system is expected to comply with all three of these sets of specifications. From the

perspective of component failure, software is no different from any other component.

Within this framework, the systems engineer has the formal role of preparing a set

of specifications for the software, and the resulting software is defined to be safe if it

complies with these specifications. Once it is developed, showing that software is safe

according to this definition is, therefore, an exercise in verification. The software is safe,

in this formal sense, to the extent that this verification is successful.

In a strictly formal sense, the software engineer's role is to implement the software

and show that the safety specifications developed by the systems engineer are

implemented correctly. The formal role of the software engineer is limited in this way

because this is all the software engineer is qualified to do. Informally, however, the software

engineer is encouraged to contribute to the development of the specifications, to analyze

the specifications, to report anything that appears to be a deficiency in the specifications,

and generally be on the lookout for any defect in the system that could detract from safe

operation. These are not formal roles of the software engineer, however, because he or

she is unlikely to be qualified to accept them.

-7-

D,

v

E

E

m

r

Annual Report NAG-1-1123 1992

3.2 Software-Safety Process

Our research on the software-safety process is in two complementary areas. The

first is concerned with developing a rigorous approach to determining and specifying

the software safety requirements. The second is focusing on means of assessing the

software safety using both formal verification techniques and empirical testing methods.

The various theoretical approaches that are being developed are inspired by the case

study. Similarly, the effectiveness of these approaches are being assessed using the case

study.

Previous approaches to software safety have failed to stress the importance of a

separate specification of the software safety requirements. Instead, the implementation

of the software has sometimes been made to double as the safety specification.

Although this approach eliminates the need for a separate safety specification, it makes

the process of verification unnecessarily difficult. Ultimately, it is only the verification of

software safety that is important. It is the specification that makes such a verification

possible

A separate safety specification provides a basis for precise communication between

the software engineer and the systems engineer. It also permits the exploitation of the

precise definition of software safety given in the definitional framework we are

developing. Recall that, within this framework, the systems engineer has the formal role

of preparing a set of specifications for the software. The resulting software is defined to

be safe if it complies with these specifications, and, therefore, formally showing that

software is safe is an instance of verification. The software is safe, in this formal sense, to

the extent that this verification is successful. It should be noted that verification here

might involve many technologies including testing and inspection. It is because of this

definition that the our research focuses on the specification of safety and the subsequent

-8-

Annual Report NAG-1-1123 1992

verification of the correct implementation of those specifications.

At present, system fault tree development for systems involving software is an ad

hoc process of refinement in which few, if any, provisions are made in the process for

the software. The process under development aims to develop system fault trees that

incorporate software systematically as system components.

m.

_=

m

E.

w

m

m

1u

Z

i
f

It is clear that the essence of the software safety specification is contained in the

system fault tree. Despite this, there is no rigorous method for deriving the software

safety specification from the fault tree nor verifying that a software safety specification

accurately models the intentions of the associated nodes and structure of the system

fault tree. We are investigating the possibility of deriving the system safety specification

from the system fault tree and using the derivation to show that the software safety

specification is complete and unambiguous.

Another key aspect of the process is verification. We have demonstrated the

concept of deriving a set of test cases from the formal safety specifications. In principle,

if such a test set could be derived and shown to be complete for any given system, the

correct execution of the test set would constitute a proof that the safety specification was

being met by the software implementation.

Although it has been argued that the correctness of software cannot be established

for safety-critical systems by testing [1], this is a general result to which there are

exceptions. We are of the opinion that safety is just such an exception for two reasons.

First, safety specifications are typically smaller than functional specifications, and

second, time can be accelerated during testing of safety facilities because they are called

upon to act so infrequently during normal operation. Thus testing is being developed as

an important aspect of the safety process under development.

-9-

w

--=.

L

u

m

w

m

m
R

z

m

W

L

Annual Report NAG-1-1123 1992

4. RESEARCH RESULTS TO DATE

The research results achieved during the grant reporting period are summarized in

this section. Documents mentioned are listed in detail in section 6.

4.1 Reliability Assessment

Previous work on software reliability assessment by life testing in which error

detection is imperfect has been been revised. The results are documented in a paper that

will appear in the IEEE Transactions on Software Engineering.

4.2 Definitional Framework

The definitional framework of software safety that is the basis of the software-

safety process under development has been extended and refined. The revised

framework is documented in a technical report.

4.3 Phased Inspections

An extensive experimental evaluation _of phased software inspections and the

associated toolset has been completed and documented. The research will be published

in a special issue of the Communications of the ACM on software quality that will appear

later this year.

4.4 Experience With Formal Specification

Our preliminary experience using the formal specification notation Z for the

specification of the software for the MSS has been documented. The paper was

presented at the 7th Annual Z User Group Meeting and appears in the proceedings.

- 10 -

Annual Report NAG-1-1123 1992

4.5 Reuse Of Specifications

As part of our research on formal specifications, we have developed a prototype

library of reusable specification parts. This library and some observations about the

issues in the reuse of specifications were reported in a paper at the Fifth Annual

Workshop on Institutionalizing Software Reuse and appears in the proceedings.

_v

E

m

!
m

r

L

m

m

E

B

4.6 Developing Test Cases From Specifications

Extended results in the development of test cases directly from formal

specifications in Z have been obtained as part of a file-system case study. These results

are documented in a technical report published by George Mason University.

4.7 Prototype Software For The Magnetic Stereotaxis System

In order to have a better vehicle for experimentation, a completely new prototype

software system is being developed for the Magnetic Stereotaxis System. The new

prototype is a distributed implementation operating on as many computers as are

required for the computational load. The new software architecture permits new

functionality to be added easily as required. In addition, the new prototype is

implemented in C++ and used the standard X-windows graphic interface and Motif

widget set.

4.8 Software Safety Process

A major goal of this research program is to develop a process by which software

specifications can be developed in a rigorous and complete manner. The present state of

the development of this process is that the overall structure has been drafted but most of

the effort during the grant reporting period has been in developing support techniques

- 11 -

=__

'iw

m

Annual Report NAG-1-1123 1992

for the process.

Three key support techniques are being developed. They are Information Flow

Analysis, Software Failure Emulation, and Tri-State Models. Each of these techniques is

summarized here.

Information Flow Analysis

A difficult problem in software specification for safety-critical systems is

determining all of the different system failures for which the software might have to

take action. For example, complex peripheral equipment such as sensors and actuators

can fail in a variety of different ways and the software's response has to be carefully

specified in every possible case.

In some situations, the software specification is determined easily. For example,

the complete failure of a sensor would require the software to respond by employing a

backup sensor or different control algorithm. However, in practice there is no

systematic way to determine whether all possible failure scenarios to which the software

must respond have been identified. As an example of the difficulty, consider the X-ray

imaging system from the MSS. The following failures to which the software must

respond have been identified:

m

E

L

An X-ray source could fail on.

An X-ray source could fail off.

A fluoroscope on which an image is captured could fail and return no image.

A fluoroscope could fail and return an outdated image.

- 12-

Annual Report NAG-1-1123 1992

A fluoroscope could fail and return a defective image containing phantom objects

that are actually failed pixels in the fluoroscope.

F

L

L-

m_

k.

m

r--"

w

m
!

F

The communication system between the control computer and the X-ray system

could fail and supply incorrect commands or defective images.

All of the above are failure modes with which the applications engineer should be

aware. However, many different technical areas are involved and no systematic

technique exists presently to derive complete and consistent software specifications from

such complex physical systems. We have developed a solution to this problem called

Information Flow Analysis.

One of the key concepts in system safety analysis is flow analysis. Hazards are

determined by considering potential undesired energy flows. Component networks are

used to model other systems flows such as coolants, hydraulic fluids, and electrical

power. However, information flow is an altogether different notion that has yet to be

fully explored. While the disruption of information flow has been considered, the

corruption of information flow has been largely ignored. And while the disruption of

information flow is important in that it permits the software to continue monitoring and

controlling the physical devices, it is largely a systems engineering concern. Redundant

cables and the elimination of single points of failure generally suffice to ensure that

information flow will continue uninterrupted.

But such analyses have minor, if any, impact on the software safety specification. It

is much more important from the perspective of software specifications, to ensure that

all possible points of information corruption have been properly identified. If a device

failure can corrupt critical system data, the possibility exists that this faulty data could

propagate throughout the system and eventually be consumed by the software.

- 13 -

T&... _

w

E_

B

E
i i

w

Annual Report NAG-1-1123 1992

Information Flow Analysis is a technique in which all sources of information are

determined for a system, and, for each source, the entire path from the information

source to the computer is identified. The path is then examined and, for each

component that modifies or transmits the information, all possible failure modes are

identified. The effect of each failure mode on the information is determined and, to the

extent possible, software specifications are prepared to detect the occurrence of the

failure and to counter its effects.

Using the MSS example once again, two important pieces of information for the

system are the X-ray images. The sources of this information are the X-ray emitters

themselves. The information starts out as X-ray photons that pass through the patient's

head and then through a lengthy set of processing hardware units before the images are

finally present in the memory of the control computer. The flow analysis of this

particular information identifies all possible failure modes of all possible devices that

might affect the X-ray images and determines an appropriate set of software

specifications in each case. Dealing with phantom objects on the images, for example, is

essential since a phantom could appear to be a seed or marker and lead to incorrect

image location. The software specification in this case to perform extensive

reasonableness checks on the returned image.

In general, there are two general classifications of information corruption: those

that can be detected and those that cannot. Information Flow Analysis determines all

the possible sources of information corruption and partitions them according to their

detectability. For those failures that can be detected, additional software (and perhaps

hardware) requirements will be generated. Those failures that cannot be detected will

either involve a failed device or faulty software. Those that involve failed devices will

require either higher reliability or redundancy in these devices. Those that involve

-14-

Annual Report NAG-1-1123 1992

failed software will require that techniques be applied to reduce the probability of

software failure in that case to an aCceptable level.

lIE

r.

Software Failure Emulation

The primary thrust of Information Flow Analysis is to determine the various

component defects outside of the software for which the software might have to take

action. Software Failure Emulation is a complementary technique that defines the

elements of the software that are critical to safe operation. The combined output of

Information Flow Analysis and Software Failure Emulation is the complete software

safety specification.

Software Failure Emulation is a two-phase technique that determines in a rigorous

fashion the elements of the safety requirements that are dictated by software. The

technique takes advantage of the fact that systems engineers impose a certain level of

formality on software safety when they perform systems safety analyses such as fault-

tree analysis. A system fault-tree analysis* is intended to uncover all of the

combinations of system occurrences that could lead to a system hazard. The technique

originated from the need to identify the likely hardware degradation faults and

combinations thereof that could lead to a hazard. As such, a system fault tree

documents in a systematic way the various events of which the systems engineer needs

to be aware. Unfortunately, typical system fault tree theory and practice do not include

software.

The key concerns with software in a safety-critical system are:

'_ It is extremely important to distinguish between system fault trees and software fault trees. The former are tools
used by systems engineers to determine system hazards. The latter is an informal software verification technique.

-15-

k,,

r

=

z

Annual Report NAG-l-1123 1992

• that it will not respond correctly when required, or

• that it will initiate actions when not required to that lead to a hazard.

The latter concern arises because any software-initiated activity in some other

component of a system must be considered as a failure mode for that component. For

example, if the software could switch on an X-ray device at an inappropriate time, it is

reasonable to assume that the device might also have switched itself on. If the software

fails to turn the device off, this appears no different from the device refusing a request to

turn off. In this sense, the software makes the device appear to have failed when in fact

it has not. Analysis based on this observation derives from the fact that software can

give the appearance of, i.e., emulate, component failure, hence the name of the technique.

The first phase of Software Failure Emulation is the determination of which system

activities the software can initiate and which it can detect. The second phase of Software

Failure Emulation consists of determining all of these possible failure modes

methodically. This is done as part of an extended form of fault tree analysis.

There is one subtle but significant difference between this fault tree analysis and

conventional fault tree analysis that must be considered here. This difference is in

addition to the fact that the actual fault trees must be retained for further analysis, rather

than being discarded after the probability of failure is computed. This difference is the

fact that a software failure can actually effect many devices concurrently and that the

probability of failures must be ignored when building the fault trees. In conventional

fault tree analysis, construction of subtrees is halted when it becomes clear that the

probability of a given branch is low enough to be ignored. These extremely low

probabilities of failure are usually caused by coincident, independent failure of several

very reliable devices. Since the already low probabilities of failures are multiplied to

-16-

L.

L-

m_ •

Annual Report NAG-1-1123 1992

determine the probability of the combined event, these values can be vanishingly small

and safely ignored. However, as has been noted above, software can emulate the failure

of the device and no probability of failure has yet been assigned to that software. In

addition, the presence of controlling software can eliminate the assumption of

independence and so system fault trees involving software-controlled devices must be

completed beyond the point where they would normally be truncated.

Tri-State Models

Tri-state modeling is a technique that is related to Failure Modes and Effects

Analysis, Event Tree Analysis, and system Fault Tree Analysis. The technique is still

under development but appears at this stage to be a general technique that includes the

three other forms of analysis as special cases.

m

m

Tri-state Models are used to document and analyze all of the manners in which

modules and devices can affect one another, either via direct control or by passing

information that could affect the operation of the recipient. Tri-state models depend on

Module Interaction Graphs which are hierarchical structures. They begin at the highest

level with individual nodes representing the software and the various major system

components, including the user if present. Lower levels are expanded to reveal software

component objects and physical subsystems respectively. Arcs to and from components

can be directed to the entire component, or to one or more sub-components within.

These graphs are similar to state-charts, but with the entries representing objects rather

than states. A complete module interaction graph represents the complete information

flow throughout all the components (including software) of the system.

The arcs coming from a node in a module-interaction graph are the three

transitions that a system can take as a result of the effects of the component represented

-17-

L_

w

_=

W

.=.

=

Annual Report NAG-1-1123 1992

by the node. The three transitions are (a) correct operation, (b) erroneous operation that

was detected, and (c) erroneous operation that was not detected. Since they represent

state transitions over time that a system experiences, the module interaction graph is

actually a particular form of Markov model. As such, Tri-state models are based on

Markov analysis.

Module Interaction Graphs make several simplifying assumptions. The first of

these is that all undetected errors are of equal severity. This assumption ensures that we

can use a single state to represent the possibility of any combination of failures.

Although this might not appear to be true, the context in which this information is later

used will ensure that this does not introduce difficulties. The second assumption is that

if an error can be detected later in the flow, it can be detected immediately after it is

introduced. This assumption will be weakened in subsequent work. The assumption

ensures that extra states to handle all possible latent failures will not need to be

introduced.

The transitions between the first and third states are fairly straightforward, but the

transitions dealing with the detected failures are more involved. There are several ways

to deal with a detected failure. If the failure involves a detected operator error or a

failure of a device that can be reset or replaced, the option exists to repeat the failed

operation. If the failure can be recovered from via alternate functionality, this

alternative can be invoked. Another alternative is to report the failure as a failure of the

module that is under investigation. That these alternatives correspond exactly to the

exception handling concepts of restarting, recovering, and propagating is not a

coincidence. In the event that either the detection, recovery, or propagation mechanism

fails, the detectable error becomes an undetectable error.

- 18 -

Annual Report NAG-1-1123 1992

The creation of the module interaction graphs is in itself a useful endeavor. It

requires the systems engineer to consider methodically every possible alternative that

could affect the operation of a given component. Each possible exceptional condition

would have to be individually considered and dealt with. The module interaction graph

also provides a convenient mechanism for precisely documenting these considerations.

The resulting graphs also represent a formal entity (a Markov model) that can be

subjected to formal manipulation. If each transition is assigned a percentage possibility,

it is trivial to calculate the percentage chance of an error passing undetected through the

system. Furthermore, a fault tree can be derived representing a complete expression of

how a device failure could occur. These fault trees could be incorporated into the

system fault trees in order to explore common-cause failures.

We are continuing the process of defining and evaluating the techniques that are

suggested by the concept of Tr-state Models.

__=

__o

5. PRESENTATIONS GIVEN

During the grant reporting period, in addition to the presentations made at

conferences listed in the following section, presentations were given at the following

locations:

• Praxis PLC, Bath, England.

• University of Southampton, Southampton, England.

• Naval Research Laboratory, Washington, DC.

• Food and Drug Administration, Washington, DC.

E

- 19 -

=

w

m

m
m

m

L

Annual Report NAG-l-1123 1992

@ Medical College of Virginia, Richmond, VA.

West Virginia University, Morgantown, WV.

• College of William and Mary, Williamsburg, VA.

University of Houston, Clearlake, TX.

6. RESEARCH PUBLICATIONS

Several publications have either been prepared, published, or accepted for

publication during the grant reporting period. In this section, these publications are

listed. Copies of each publication have been supplied to the sponsor under separate

cover.

(1)

(2)

(3)

P.E. Ammann, S.S. Brilliant, and J.C. Knight, 'q"he Effect of Imperfect Error

Detection on Reliability Assessment via Life Testing", IEEE Transactions on Software

Engineering, to appear.

J.C. Knight and E.A. Myers, "An Improved Software Inspection Technique and an

Empirical Evaluation of Its Effectiveness", Communications of the ACM, to appear.

D.M. Kienzle and J.C. Knight, "Reuse of Specifications", Fifth Annual Workshop on

Institutionalizing Software Reuse, Palo Alto, CA, November 1992.

(4)

(5)

D.M. Kienzle and J.C. Knight, "Preliminary Experience Using Z To Specify A

Safety-Critical System", Seventh Annual Z User Group Meeting, London, ENGLAND,

December 1992 (proceedings published by Springer Verlag).

P.E. Ammann and J. Offutt, "Functional and Test Specification for the MiStix File

System", technical report ISEE-TR-93-100, George Mason University, Fairfax, VA,

January 1993.

- 20-

L..._

=

Annual Report NAG-1-1123 1992

(6) J.C. Knight and D.M. Kienzle, "Safety-Critical Computer Applications: The Role of

Software Engineering", Technical Report TR-92-23 (revised), Department of

Computer Science, University of Virginia, Charlottesville, VA, January 1993.

L_

L_

--.d_L

- 21 -

Annual Report NAG-1-1123 1992

REFERENCES

[1] Buffer, R.W. and G.B. Finelli, The Infeasibility of Experimental Quantification of Life-

Critical Software Reliability, SIGSOFT "91 Conference on Software for Critical

Systems, New Orleans LA, Dec. 1991.

[2] Green, A., "Safety Systems Reliability", John Wiley & Sons, New York, 1983.

_1

w

[31

[41

Jahanian, F., and A. Mok, "Safety Analysis of Timing Properties in Real-Time

Systems", IEEE Transactions on Software Engineering, Vol. SE-12, No. 9, Sept. 1986.

Leveson, N., "Software Safety: Why, What, and How", Computing Surveys, Vol.

18, No. 2, June 1986.

[51

[6]

Leveson, N., "Software Safety in Embedded Computer Systems",

Communications of the ACM, Vol. 34, No. 2, Feb. 1991.

Leveson, N., S. Cha, and T. Shimeall, "Safety Verification of Ada Programs Using

Software Fault Trees", IEEE Software, Vol. 8, No. 4, July 1991.

w

=!

m.

m

m

[7]

[8]

[9l

[10]

Leveson, N., and P. Harvey, "Analyzing Software Safety", IEEE Transactions on

Software Engineering, Vol. SE-9, No. 5, Sept. 1983.

Leveson, N., and J. Stolzy, "Safety Analysis Using Petri Nets", IEEE Transactions

on Software Engineering, Vol. SE-13, No. 3, March 1987.

Parnas, D., A. van Schouwen, and S. Kwan. "Evaluation Standards for Safety

Critical Software", Technical Report 88-220, Dept. of Computing and Information

Science, Queen's University, Ontario, May 1988.

Sayet, C., and Pilaud, E., "An Experience of a Critical Software Development",

Proc. of 20th Int. Conference on Fault Tolerant Computing, Newcastle Upon Tyne,

-22-

'It..-

L_

u_.z;

1-3

5 - 6*

7-8

9- 10

11

12

DISTRIBUTION LIST

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665

Attention: Dr. D. E. Eckhardt, M/S 478

National Aeronautics and Space Administration

langley Research Center

Acquisition Division

Hampton, VA 23665

Attention: Mr. R. J. Siebels

Grants Officer, M/S 126

NASA Scientific and Technical Information Facility

P. O. Box 8757

Baltimore/Washington International Facility

Baltimore, MD 21240

E. H. Pancake, Clark Hall

J. C. Knight

J. M. Ortega

SEAS Postaward Administration

SEAS Preaward Administration Files

*One reproducible copy
**Cover letter

JO#5169:ph

E,

E

